The Ohmic Quandary
The last thread (Part 2) ended on a positive note demonstrating that with proper tuning the overall ZFM efficiency could easily be pushed to the 50+% level with the 6 pole rotor and three coil (bifilar strand configuration). Certainly the lessons learned in this three coil effort could be applied to the two pole coil and four pole rotor configuration to improve its performance to a higher level.
All that aside, one experiment that was not included in the prior thread was the single wire versus bifilar comparison for the 6 pole three coil bifilar configuration, so this thread is devoted to the direction of experimenting with various coils and multifilar coil strands. The Bedini/Cole association lasted many years and certainly created a synergy of innovation between them. John B was a prodigious experimenter with a passion for physical results and minimal technical documentation - his passion was centered in the exploration and discovery, while Cole, ever the experimenter, did understand the value of documentation and its importance to future replications.
R Cole produced a schematic of a coil configuration experiment that took a quadfilar strand Coil wind and proceeded with an experiment that at a given voltage tested the various amperages in parallel of each added strand to the coil. The experimental results are somewhat mind blowing in that while the overall resistances of each parallel strand addition were calculated in the classical method the overall operating amperages for each strand addition were not. Contrary to expectation.
Here is his data sheet.
So this intriguing information from R Cole's experimentation triggered a "what if" question and it was applied to two experiments with the existing 6 Pole ZFM. Here is a schematic of the basic ZFM configuration used in these experiments.
EXPERIMENT 1 Single Strand
Three bifilar coils, #20AWG, with 1.1 Ohm resistance per single coil strand with 6 pole rotor. Connect only one strand per coil in series. Total series R equals 3.4 Ohms.
Experiment 2 Bifilar Strand
Same config as first experiment, but with coil strands in parallel with 0.55 Ohm resistance per coil. Coils wired in series for a total R of 1.7 Ohms.
These two experiments were run on three separate days with all the resulting data demonstrating the same type of behavior and values. Certainly, these preliminary experiments support the results of at least two parts of Cole's data and his supposition that the coil wiring configuration yields results that do not conform to the classical methods of measurement or calculation. So is Ohm's Law out the window or are there other unidentified influences at play with the ZFM???
In a nutshell, these two experiments demonstrate that changing the overall resistance of a coil by 50% with equal length strands, and then wiring the remaining motor coils in series increases the performance in terms of speed (RPM) with only a minor change in total Input Power. This is way over my primitive level of understanding for at least the time being.
There is a video of the above experiments in the works - unedited version is well over 15 minutes in length due to a lot of dead time taking the Load readings. I will post this at a later date when a decision is reached to post an edited or unedited version.
This new project, with associated experiments, should keep me occupied for some time and expect to initiate more of this work later this summer.
Thank you for your kind attention,
Yaro Stanchak
The last thread (Part 2) ended on a positive note demonstrating that with proper tuning the overall ZFM efficiency could easily be pushed to the 50+% level with the 6 pole rotor and three coil (bifilar strand configuration). Certainly the lessons learned in this three coil effort could be applied to the two pole coil and four pole rotor configuration to improve its performance to a higher level.
All that aside, one experiment that was not included in the prior thread was the single wire versus bifilar comparison for the 6 pole three coil bifilar configuration, so this thread is devoted to the direction of experimenting with various coils and multifilar coil strands. The Bedini/Cole association lasted many years and certainly created a synergy of innovation between them. John B was a prodigious experimenter with a passion for physical results and minimal technical documentation - his passion was centered in the exploration and discovery, while Cole, ever the experimenter, did understand the value of documentation and its importance to future replications.
R Cole produced a schematic of a coil configuration experiment that took a quadfilar strand Coil wind and proceeded with an experiment that at a given voltage tested the various amperages in parallel of each added strand to the coil. The experimental results are somewhat mind blowing in that while the overall resistances of each parallel strand addition were calculated in the classical method the overall operating amperages for each strand addition were not. Contrary to expectation.
Here is his data sheet.
So this intriguing information from R Cole's experimentation triggered a "what if" question and it was applied to two experiments with the existing 6 Pole ZFM. Here is a schematic of the basic ZFM configuration used in these experiments.
EXPERIMENT 1 Single Strand
Three bifilar coils, #20AWG, with 1.1 Ohm resistance per single coil strand with 6 pole rotor. Connect only one strand per coil in series. Total series R equals 3.4 Ohms.
RPM | Load(gr) | Output(w) | Volts | Amps | Input(w) | Eff(%) |
2905 | 0 | 0.00 | 24.04 | 0.42 | 10.10 | 0.0 |
2572 | 460 | 7.70 | 24.07 | 0.75 | 18.05 | 42.7 |
2069 | 1020 | 13.74 | 24.07 | 1.29 | 31.05 | 44.2 |
1636 | 1500 | 15.97 | 24.04 | 1.73 | 41.59 | 38.4 |
Same config as first experiment, but with coil strands in parallel with 0.55 Ohm resistance per coil. Coils wired in series for a total R of 1.7 Ohms.
RPM | Load(gr) | Output(w) | Volts | Amps | Input(w) | Eff(%) |
3029 | 0 | 0.00 | 24.02 | 0.43 | 10.39 | 0.0 |
2717 | 500 | 8.84 | 24.03 | 0.82 | 19.70 | 44.9 |
2339 | 1050 | 15.99 | 24.05 | 1.33 | 31.99 | 50.0 |
2035 | 1520 | 20.13 | 24.06 | 1.75 | 42.11 | 47.8 |
In a nutshell, these two experiments demonstrate that changing the overall resistance of a coil by 50% with equal length strands, and then wiring the remaining motor coils in series increases the performance in terms of speed (RPM) with only a minor change in total Input Power. This is way over my primitive level of understanding for at least the time being.
There is a video of the above experiments in the works - unedited version is well over 15 minutes in length due to a lot of dead time taking the Load readings. I will post this at a later date when a decision is reached to post an edited or unedited version.
This new project, with associated experiments, should keep me occupied for some time and expect to initiate more of this work later this summer.
Thank you for your kind attention,
Yaro Stanchak
Comment