Hi Rodolphe,
1- Yes, the schematic is correct for both.
2- Advantage is a higher voltage output for a direct load. Not sure about when charging another capacitor, as in the comparator. ............ ZPDM experimented with capacitors a lot. Some of which is shown in these two threads. https://www.energyscienceforum.com/f...acitor-paradox ........................ https://www.energyscienceforum.com/forum/alternative-energy/john-bedini/2653-solid-state-battery-charger
3- You correctly answered your own question.
Yes. That was my thinking. ...................................Whether correct thinking or not, I did get the results I was looking for.
That is where he used a neon lamp to check for the presence of high voltage "radiant energy". In those photos you can also see the protection neons across the 6 transistors are also on, indicating the circuit was putting very high voltage spikes into the battery. I never intentionally operate my SSG at this high of a voltage level. It also appears that he was charging large 6 volt batteries. Don't know if it was only one battery or several in series and/or parallel? Again, I don't have this particular DVD.
Gary Hammond,
P.S. - Keep in mind that my upside down coil circuit was used to drive 42 LEDs. I also used a separate generator coil (with an identical voltage doubling cap/diode arrangement) to drive another 42 LEDs. I don't have a small enough comparator to use on either of these circuits. BUT, I was able to parallel the outputs of these (without the LEDs) to either charge another battery and/or connect them back to the input battery to reduce the input current draw.
1-)Did I indicate the FWB and the doubling voltage arrangement (DVA) correctly in attachment 1?
2-)If correct, what advantage would the DVA have over the FWB version? Higher voltage output?
(The downside of the DVA would be that I need to find the right size for the caps for the DVA and the comparator, while with the FWB version I only need to size the cap or the comparator).
3-)Why would you not connect the output of the comparator directly to the output battery of the SG, see attachment 2? Would the two systems (CG mode & comparator) interfere with each other, sending CG output into the comparator and visa versa?
2-)If correct, what advantage would the DVA have over the FWB version? Higher voltage output?
(The downside of the DVA would be that I need to find the right size for the caps for the DVA and the comparator, while with the FWB version I only need to size the cap or the comparator).
3-)Why would you not connect the output of the comparator directly to the output battery of the SG, see attachment 2? Would the two systems (CG mode & comparator) interfere with each other, sending CG output into the comparator and visa versa?
2- Advantage is a higher voltage output for a direct load. Not sure about when charging another capacitor, as in the comparator. ............ ZPDM experimented with capacitors a lot. Some of which is shown in these two threads. https://www.energyscienceforum.com/f...acitor-paradox ........................ https://www.energyscienceforum.com/forum/alternative-energy/john-bedini/2653-solid-state-battery-charger
3- You correctly answered your own question.
What you’re saying is: if the gap is too close, you couple the coils, and the drag/load will be noticeable in the SG output performance, whilst when sufficient space is between the coil, you only capture stray flux, and the effect is not noticeable on the SG output. And because you/I only capture the stray flux, I do need to put the windings in series to get an high enough output of the 2nd coil. Correctly summarized like that?
No, this is where he connects one end of the little light to a frame (not connected to the battery terminals) and the other end of the light he touches on of the plastic caps of the battery and the light goes on, see attachment 3. The batteries are charged with a solid state charger (so it seems).
Gary Hammond,
P.S. - Keep in mind that my upside down coil circuit was used to drive 42 LEDs. I also used a separate generator coil (with an identical voltage doubling cap/diode arrangement) to drive another 42 LEDs. I don't have a small enough comparator to use on either of these circuits. BUT, I was able to parallel the outputs of these (without the LEDs) to either charge another battery and/or connect them back to the input battery to reduce the input current draw.
Comment